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A stochastic model for the idealized locomotion of cells is studied. The cell is 
assumed to cover a polygonal line in IR k, the times between turns are exponen- 
tially distributed and independent of the directions, and the density of the nth 
direction e does not depend on the (n - 1)th direction e'. The resulting Markov 
process (X(t), D(t)) for position and direction of the motion at time t is studied 
by using the integrodifferential equation for the transition function. For exam- 
ple, the joint distribution of (X(t), D(t)) is derived in closed form if n = 2 or 
n=3 and all chosen directions (including the initial one) are uniformly 
distributed. For higher dimensions the combined Fourier-Laplace transform of 
X(t) is given. The case of a fixed initial direction is also considered. 

KEY WORDS: n-dimensional random walk; exact probability distribution. 

1. ~NTRODUCTION 

I consider a particle moving  in n-d imensional  space along straight-line 

paths which are separated by turns. While several authors  consider models 
for p lanar  mot ions  of this type, (11'7'12't3) the analogous  stochastic behavior  
in three d imensions  is much  less studied. (14'15) In  this paper  I present an  n- 

d imens ional  model  (n/> 2). Us ing  this general approach,  I am, for example, 
able to derive some new results for the two- and  three-dimensional  models. 
R a n d o m  walks of this type are of frequent use in the description of celt 
mot i l i ty .~  m) I shall, however, focus on  the case of noncorre la ted  directions 

in which explicit formulas for several densities and  transforms turn  out  to 
be computable .  The complexity of these calculat ions seems to indicate that  
in the case of n o n u n i f o r m  turn  angle dis t r ibut ions (which are widely used 
in cell mo t ion  models)  closed-form expressions canno t  be expected. 
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Let X(t) ~ ~" be the position and D(t) E S" 1 = {e E N"[ Ilell = 1 } be 
the direction of motion of the particle at time t; 11-1[ denotes Euclidean 
length. 

The particle starts its motion at X(0 )=0  and covers its polygonal 
trajectory with unit speed. The initial direction D(0) may have an arbitrary 
distribution. I make the following assumptions: 

(i) The step lengths (i.e., the times between turns) are independent 
random variables with a common exponential distribution of 
mean 1/2 (this assumption can be substantiated by experimental 
observation of bacteria). 

(ii) The sequence of chosen directions is independent of the sequence 
of step lengths. 

(iii) Given that the nth direction is e', the (n+  1)th direction e has 
a density depending only on the angle between e and e', say 
y((e, e'>), where <., �9 > denotes the Euclidean scalar product. 

Then the pair (X(t),D(t)) forms a Markov process with values in 
N"x S "-1. In Section 2 I derive the Fokker-Planck equation of this 
process, which will be the starting point of most of the subsequent results. 
I denote by p(x, e; t) the probability density of (X(t), D(t)), i.e., for all 
Borel sets B c R" and C c S"-1, 

f~fcP(X,e; t )  dxdO(e)=P(X(t)EB,  D(tlEC) (1.1) 

where O is the surface measure on S"-1. In Section 3 a series expansion of 
p(x, e; t) is derived. 

The situation when aU directions are uniformly distributed on S" -a  
[i.e., 7 = const and D(0) is uniform] is amenable for explicit analysis, and 
is thus treated in this paper. In the case n = 2 we obtain 

p(x, e; t ) =  2 exp{2(t 2 -  nxll2)l/2-2t}/4~z2(t - (x, e>), 0~< Ilxtl < t  

(1.2) 

The marginal distribution of X(t) in the two-dimensional case has already 
been derived in ref. 12. The much more complicated three-dimensional case 
is settled in Section 4. If q(x; t) is the density of X(t), the following formula 
holds for n = 3: 

~e-~t[[x[~---[ ( Ixll/t 
q(x; t)=4~ z 2 ~ exp{2(tv + Nx][)aretanhv} (arctanhv)2dv o 1 

1 arctanh [Ixll~ O< Ilxl[ < t  (1.3) 
+ t  l /  
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The joint density of X(t) and D(t) can be derived from (1.3) by a formula 
which will be established in Section 2. 

In Section 4 we assume that 7 -= const and the initial direction D(0) 
has the density h(e). In this case we obtain the combined Fourier-Laplace 
transform 

fi(O, e; s) = e ~<~ ~p(x, e; t) dt dx, 
n 0 

O E ~  n, s > O  (1.4) 

of p(x, e; t) with respect to x and t for fixed e ~ S n ~. It is given by 

p(O, e; s) 

1 

s - i ( e , O ) + 2  

Fh(e ) + [F(n/2) 2/2~ n/2] Is._1 [h(e)/(s - i(e, O) + 2)] dO(e) ] 
X 

I 
(1.5) 

If the first direction is also uniformly distributed, we find that the Laplace 
transform of the characteristic function of X(t) is given by 

0(0; S) = J 0  E(ei(~ e - "  dt 

arctan[ II0ll/(s + ~)l 
II011 - 2 arctan[f[Ol]/(s + 2) ]  

if n = 3  (1.6) 

For  n/> 4 we also obtain closed-form expressions for c)(0; s). 
Particularly interesting fo r applications is the case of a fixed initial 

direction D(0)=eo .  Let q(x; t]eo) be the density of X(t), given that 
D(0) = eo. We show that 

q(x; tleo)= O(S n 1) pl(x ' eo; t) (1.7) 

where p~(x,e;t) is the density of (X(t),D(t)) under the condition 
h -  1/O(Sn-~). By (1.7), the calculation of the density of X(t) under a fixed 
initial direction is reduced to that of the density of (X(t), D(t) for a uniform 
initial direction. Especially if n = 2  and n =  3, explicit expressions for 
q(x; t[eo) can be derived in this way. 
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2. THE I N T E G R O D I F F E R E N T I A L  E Q U A T I O N  FOR THE J O I N T  
DENSITY  

Although explicit results will be gained only in the case of non- 
correlated directions, I will present the n-dimensional model equations for 
the general case in this section. I retain the notation and the assumptions 
introduced in Section 1. The transition function p(x', e'; t lx ,  e, s) of the 
Markov process (X(t), D(t)) has the properties 

P(X(t) ~ B, O(t) = e I X(s) = x, O(s) = e) 

= f~ p(x', e; t l x, e; s) dx' 

for all e e S  n 1, xeE~,  B c R  n, O<~s<t (2.1) 

P(X(t) E B, D(t) e CIX(s )=  x, D(s )=e)  

f I~ " t [ x , e ; s )  dx'dO(e) = p(x', e ,  
C 

forall e e S  n 1, x e N ' ,  B e N  n, C c S ' - l \ { e } ,  O ~ s < t  (2.2) 

where B and C are, of course, Borel sets and O is the usual surface measure 
on S "-1. Relations (2.1) and (2.2) give the transition probabilities of the 
process corresponding to the cases of no change or at least one change of 
direction during the time interval Is, t), respectively. 

The Fokker-Planck equation for this transition function has the form 

8 
t t .  --St p(x', e ," t[x, e; s) + ( e', gradx,p(x , e , tl x, e; s) ) 

t ,  + 2p(x', e ,  t lx,  e;s) 

= 2 f y ( (e ' , e") )p(x ' ,e ' ; t lx ,  e;s)dO(e") 
S n -  1 

(2.3) 

The proof of (2.3) follows well-known lines (for a related derivation see 
ref. 15) and will only be sketched. It is convenient to consider, for 
C o S  ~-1, 

p(x', C; t lx ,  e; s )= p(x', e; t lx ,  e; s) lc(e) 

+ fcP(X',  e'; t lx,  e; s) dO(e') (2.4) 
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where 1 c denotes the indicator function of the set C. If h: Nn__, N is an 
arbitrary smooth function, one obtains 

C;,lx, e;s)d ' 

= l i m ( e  ' f ~ ; s , . L o  ~ ,,-~{fe [ h ( x ' ) + ( g r a d h ( x ' ) ' x ' - x ' ) .  

+ O(l tx ' -  x'l12)] 

C; t+elx",  e'; t) dx' t p(x", de'; t[x, e; s) dx" x p ( x ' ,  

Here we have used a Taylor expansion of h around x" and the 
Chapman-Kolmogorov equation for p(x', C; t] x, e; s). Under our assump- 
tions we have 

lim e-l[P(D(t  + e)=eiX( t )= x, D ( t ) = e ) -  1] 
e.LO 

= lira e l [ e - ) '~ -  1] = - 2  (2.6) 
e.LO 

by the lack-of-memory property of the exponential waiting-time distribu- 
tion between turns, and, if e r C, 

lira e IP(D(t + ~) ~ CI X(t) = x, D(t) = e) 
~.[ 0 

= lim e- l [2ee  x~ + o(e)] ~ 7((e, e ' ) )  dO(e') 
e~.O JC 

= 2 fC 7((e, e' ))  dO(e') (2.7) 

because for a Poisson process the probability of one event between t and 
t + e is equal to 2ee-)'~ and that of at least two such events is of order o(e). 
Using (2.6), (2.7), and partial integration in (2.5) yields 

3 
f~ h(x') p(x', C; t l s) dx' -g x~ e; 

--=2 oR[. h(x") Loc] f - _f~.-I 7( (e',  e") ) p(x", de'; fix, e; s) dO(e") 

- p(x", C; t[ x, e; s)l  dx" 

--fR. h(x") fc(e"grad~"P(X"'de ' ; t lx 'e;s))dx" (2.8) 

Since h and C are arbitrarily chosen, (2.3) follows from (2.8). 
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Expression (2.3) is the fundamental equation for the transition func- 
tion of the Markov process (X(t), D(t)) from which further information in 
special cases can be obtained. The analogous equation for the joint 
probability density p(x, e; t) of (X(t), D(t)) is obviously given by 

8 
at p(x, e; t) + (e, gradx p(x, e; t) ) + 2p(x, e; t) 

= 2 fs~-' ?((e, e ' ) )  p(x, e'; t) dO(e') (2.9) 

3. RECURSlVE RELATIONS FOR THE DENSITY OF (X(t), O(t)) 

I denote by pj(x, e'; tie) the conditional joint density of (X(t), D(t)) 
given that the walk starts at the origin with the initial direction e and that 
there are j turns in the time interval (0, t). The number of turns in (0, t) 
has a Poisson distribution with parameter 2. By the formula of total 
probability, we have the series expansion 

'" t l e) = ~ e 
(2t) j 

p(x, e , j=o j!  pj(x, e'; tie) (3.1) 

by conditioning with respect to the number of turns in (0, t). Obviously, 

po(x, e'; t] e) = 6 ( x -  te) 6(e' - e) (3.2) 

where 6(.) denotes the Dirac delta function. I now establish the following 
recursive relation for the functions pj(x, e'; t t e): 

&(x, e'; t[ e) 

ft =Jt-Jfsn lf(]lx_te,il2)/(2(t_ 
x ~/((e', e" ) )  dO(e") 

(x,e'))) 
u s-  lp s_ l(X - (t - u) e', e"; u le ) du t 

(3.3) 

(3.3) is derived by conditioning with respect to the time U of the last turn 
in (0, t). Given that there are j turns in (0, t), their times have the same 
joint distribution as j independent random variables with the uniform 
distribution on (0, t). Thus, U has the density j t-Ju j 1 on (0, t). One 
must have X ( u ) = x - ( t - u ) e '  in order to ensure that X( t )=x ,  and 
I I x - ( t - u ) e ' H ~ u  in order to ensure that x - ( t - u )  e' is a possible 
displacement at time u. This latter condition is equivalent to 
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u>~ IIx-te ' l l2/2(t  - ( x ,  e ' ) ) .  Given that U = u ,  the times of the first j -  1 
turns are distributed uniformly and independently on (0, u). Thus, one can 
compute pj(x, e'; t[ e) by integrating pj l ( x -  (t - u) e', e"; u le) 7((e', e" ) )  
with respect to e' and u, using the surface measure on S n 1 for e" and the 
conditional density of U for u. 

The series expansion (3.1) and (3.3) determine p(x,  e'; t te) in principle. 
However, the occurring integrals seem difficult to handle. For the rest of 
the paper I consider the case of uniformly distributed changes of directions 
in more detail. Thus, let 7((e, e ' ) ) =  1 / O ( S " - l ) = F ( n / 2 ) / 2 n  "/2 (the initial 
direction may be chosen according to an arbitrary distribution). Integrat- 
ing (3.3) with respect to e, we obtain for the density p j (x , e ' ; t )  of 
(Z(t),  D(t)),  given that there a r e j  turns in (0, t), the recursion 

, F ( n / 2 ) j r '  
pj(x, e'; t ) =  ~ ~(|llx-te'12)/(2(t - (x,e')))  

where 

Obviously, 

u J - l q j _ l ( x  - ( t -  u) e'; u) du 

(3.4) 

qj(x; t ) = f s , - I  pj(x, e; t )dO(e)  (3.5) 

j = 0  

(3.6) 

is the density of X(t).  Expressions (3.4) and (3.6) imply the relation 

(rcn"/2) 2 Ji' p(x, e; t) = e ;(' U)q(x - (t - u) e; u) du 
I ]x-  tejl2)/(2(t -- (x,e)))  

if x C t e  (3.7) 

If x = te, we also have X(t)  = x if no turns have taken place in (0, t) and 
D(0) =e.  Letting h(e) denote the density of D(0), we thus have to add 
e-ath(e) to the right-hand side of (3.7) in the case x = te. Equation (3.7) 
allows us to compute p(x,  e; t) if q(x; t) is known. 

Let us now further specialize to the case when also D(0) is uniformly 
distributed. T h e n  qo(x; t) corresponds to the uniform distribution on 
tS n-1. Approximating this distribution by the uniform distribution on 
t - k - l  < Hxll < t + k 1, which has the density 

(kI'(n/2 + 1 )/2n~"/2t ~- 1 ) 1 ~, k ~,t + k ~( IIXPI ) 

822/56/3-4-12 
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we can compute  p~(x, e; t) as follows: 

lim F(n/2)  f t  kF(n/2  + 1) 
p1(x,  e~ t ) =  

~ ~ ~ 2z~n/2t J ( ] [ x _ t e [ ] 2 ) / ( 2 ( t _  ( x , e ) ) )  21~7~n/2b! n-1 

x l(u-k-~,u + k - , l ( I tx -  ( t -  u) e'l[) du 

F(n/2)2 lim k ~  I>' ,ej,2)/{2(t <~e> 2k 1))ul "du  
87 ' in I  k ~ co ~ (llx-- tell2)/(2(t - ( , x , e ) ) )  

(3.8) 

In the two-dimensional  case (n = 2) we obtain 

Thus, 

1 
pl(x ,  e; t) = 4rc2t't--t (x, 8 ) )  

( ,  dO(e) 1 
ql(X; t) = Js/1 -- 4zt2t(t-- (x ,  e ) )  27zt2[1 -- ([Ixlr/t)2] 1/2 

(3.9) 

(3.1o) 

Now it follows easily f rom (3.4) that 

pi( x, e; t ) = j [ 1  - ( [[xll/t )2] ( j -  1)/2/4g2t( t - ( x, e ) ), 

Inserting (3.11) into (3.1) yields 

p(x,  e; t) = 2 exp{2(t  2 - IlxH2) 1/2-  2t}/47t2(t - ( x ,  e ) ) ,  

j~> 1 (3.11) 

0 ~< Itxll < t 

(3.12) 

Except for a constant  factor, the joint  density of (X(t), D(t ) )  is thus the 
product  of exp{2(t  2 -  Iix112)1/2}, a mono tone  decreasing function of IIxlF, 
and of the function ( t -  (x ,  e ) )  - t ,  reflecting the dependence of the joint  
density on the angle between x and e. If we fix the cosine, say fl, between 
x and e, the density becomes, except for a constant  factor, 

f e (u)  = (t - /~u)  - t  exp{2(t  2 - u2) 1/2 } 

where we have set u = IlxlP < t. If fl ~< 0, this function decreases monotoni -  
cally on [0, t). If 0 < fl < 1, there is an Uo ~ (0, t) such that  f increases on 
[0, Uo] and decreases on [Uo, t). The  Uo can be determined as the unique 
solution of the equat ion 2 u ( t - ~ u ) = f l ( t 2 - u 2 )  m in the interval [0, t). 
Only in the case f i = l  (i.e., x/ l lxf l=e) do we have l i m , T t f ( u ) = m .  
Regarding monotonici ty ,  for fl = 1 two cases are possible. Let 

c~= inf /~/-- 1 ( /  "~- b/~ 1/2 CI 2 (51 /2+1~1 /21=  1 
O<u<' \t--7-uJ t 5 ' / z -  1 ~ , 3 -  51/2J t 3.33019 . . . .  t 
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5 '  

4 ,  

5 
= _  

, >  

Fig. 1. 
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Plot o f f , (u )  for t = 2 =  1 and different values of fl ( =  - 1 ,  0.5, 0, 0.5, 0.7). 

If 2~<c,, f l  is monotone increasing on [0, t). If 2 > c , ,  the equation 
2 u ( t -  u) = (t 2 -  u2) m has exactly two solutions u~, u2 e (0, t), ul < u2, 
and f l  is monotone increasing on [0, ul] and on [u2, t) and monotone 
decreasing on [ul,  u2]. 

Figure 1 shows the graph o f f , (u )  for t = 2 = 1 and different values of 
/~ (fi = - 1 ,  - 0 .5 ,  0, 0.5, 0.7). Figure 2 gives the graph of e-~fl(u) for t = 1 
and 2 =  1, 2, 3, 4, 7. 

From (3.12) the marginal and conditional densities of X(t) and D(t) 

~=2 

~=3 

x=4 

?,=7 

' ' - - - - -  '6 ~ ---- ~> .2 .4 . .8 I u 

Fig. 2. Plot o f f l (u  ) for t = 1 and different values of 2 ( =  1, 2, 3, 4, 7). 
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can be derived. D(t)  is obviously uniformly distributed on S 2, and for the 
density q(x; t) of X(t) ,  we obtain 

2 
q(x: t) = ~ (t 2 - Ilxtl 2) 2/2 exp{2(t 2 _ Jlxll 2)2/2 _ 2 t}  (3.13) 

(3.13) has already been derived and discussed in ref. 12. 
The conditional density of D(t) ,  given that X( t )  = x, is given by 

(t 2 - 11x[[2) 2/2 
p , ( e l x ) - 2 r c ( t _ ( x , e ) ) ,  e E S  1, [txll<t (3.14) 

since p(x,  e; t) = q(x; t) p t (e lx ) .  
Thus, if we denote by/~ the angle between D(t)  and X(t),/3 has, under 

the condition UX(t)[[/t=b (for fixed b e [0, 1)), the density 

(11 - b2)V2 
g,( /~l  b)  = 2 ~  - b c o s / 3 ) '  

j~ e [0, 2g) 

This density is symmetric around ~, decreasing on [-0, ~], and increasing 
on [re, 2r 0. If b is small, it is approximately constant; if b ]" 1, it tends to be 
concentrated at 0 and 2re. Thus, if Ilxll is small compared with t, the condi- 
tional distribution V,.x of D(t) ,  given that X ( t ) = x ,  is nearly uniform; if 
Ilxll/tT 1, Vt, x converges weakly to the point mass at x/llxll. In general, v,,x 
has a density with a maximum at x/llxll, decreasing from it in both direc- 
tions (clockwise and counterclockwise) symmetrically to its minimum at 
- x/llxll. 

If n ~> 3, the situation becomes more difficult. The calculation of the 
limit on the right-hand side of (3.8) gives 

2"-4F(n /2 )  2 ( t -  ( x ,  e) )  "-3 
pl(x ,  e; t) - n ~> 3 (3.15) 

7r"t Ilx - tell 2 , 

For example, if n = 3, 

q l ( x ;  t)  = (81r2t ) -1  fs 2 ]Ix - tell-2 dO(e) 

= (87t2t)-l f ~  fo sin vl dvl dV2 
Ilxll 2 + t2 _ _  2 !lxll t cos  v2 

= ( 47~2t2 Ilxl]) -1  [ ( I ] x l l -  0 - 4 -  (llxl] + t ) - 4 3  (3.16) 
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so that, by (3.4), 

f 
t 

pz(x, e; t ) =  (32~z3t 2) 1 u -1 I Ix-  ( t - -u )  eli-1 
( [ I x -  t e l 2 ) / ( 2 ( t  --  ( x , e ) ) )  

x { [ l t x - ( t - u ) e [ [ - u ]  - 4 -  [ _ [ [ x - ( t - u )  e[I + u ]  -4 } du 

(3.17) 

This integral (as well as the corresponding ones for larger values of j )  
apparently cannot be given in closed form. In the next section we shall 
explicitly derive q(x; t) in the three-dimensional case by combining the 
approach developed above and the use of (2.9). 

4. EXPONENTIAL STEP LENGTHS AND UNIFORM 
DIRECTIONS IN THE THREE-D IMENSIONAL CASE 

Let us now study the motion of a particle starting at the origin of the 
(xl, x2, x3) space and choosing independently exponentially distributed 
step lengths (with mean 1/2) and directions which are uniformly distributed 
on the sphere S 2. Let q(x; t) be the density of the displacement at time t; 
obviously, q depends on x only through ]lx[t, so that we can write 
q(x; t) = 77( IIxll; t), x ~ ~3. 

The approach developed in Section 3 apparently does not lead to a 
closed-form expression for q(x; t). Therefore we have to invent a little trick 
and consider the following related problem. Assume that the starting point 
is distributed uniformly in the plane x3 = 0 [i.e., take the Lebesgue measure 
in the (xl, x2) plane as prior density]; after the starting point is deter- 
mined, the motion proceeds as is described above. Let r(x~, x2, x3, t) be 
the density at time t. Obviously, 

r(x, ,  x2, x3; t ) =  Z/(ll(x~-x'l, X z -  X'2, x3)l[; t) dx' a dx'2 

= 2 ~  77((y2 + x~)~/2; t) y dy 

f 
co 

= 2 ~  7q(v;t) vdv (4.1) 
Ix3[ 

Let F(u; t ) = r ( x l , x 2 ,  u; t) for uc[~. Then, by (4.1), 

~(u; t )=  -(2~zu)-i  ~u ?(u; t), 0 < u < t  (4.2) 
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Thus it suffices to compute f(u; t). Let p(x~, x2, x3, e; t) ( e e S  2) be the 
joint density of displacement and direction at time t. Clearly, p depends on 
e only through the cosine, say ~, between e and the x3axis; further, p is 
independent of x~ and x2. Therefore the relations between /~(u, ~; t )=  
p(0, 0, u, e; t) and f(u; t) are, by (2.9), given by 

0 3 
~t ~(u, c~; t) + ~ -~u b(u, c~; t) + 2if(u, cq t) = (2/4~z) f(u; t) (4.3) 

(4~z is the surface measure of S 2) and, by a change to polar coordinates, 

( .  

?(u; t) = is2 P(Xl'  x2, u, e; t) dO(e) 

= 2n if(u, cr t) d~ 
- - 1  

The initial condition for/~ is given by 

p(u, eq 0) = O(u)/4rc 

Analogously as in (3.6), we can write 

~(.; t)= ~ T e-%(u; t) 

and 

(4.4) 

(4.5) 

(4.6) 

oo (;~t)" 
~(u, ~; t )=  )_2 7 e - ~ ' ~ , ( u ,  ~; t) (4.7) 

n = 0  " 

where f ,  is the conditional density of the displacement in the third coor- 
dinate, given that there are n turns up to time t, and/~,, is defined similarly. 

Moreover, we have 

~'n(u; t) = t-~?,(u/t; 1) (4.8) 

p(u, cr t )=  t -  lp,(u/t, ct; !) (4.9) 

To see (4.8), note that the left-hand side is the integral with respect to the 
first two coordinates (xl ,x2) of the density of a sum of the form 
( x l , x 2 , 0 ) + S ,  where S is a sum of n +  1 independent, rotationally 
invariant random vectors whose lengths are given by the n + 1 spacings of 
a sample of size n from the rectangular distribution on (0, t). The right- 
hand side can be interpreted in the same way except that S must be 
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replaced by tS'  and the interval (0, t) by (0, 1). Obviously, S and tS'  have 
the same distribution. (4.9) can be derived by a similar argument.  

Inserting (4.8) and (4.9) into (4.6) and (4.7) and inserting the resulting 
series into (4.3) and (4.4) yields for rn(u)=?n(u;1) and p n ( u , e ) =  
47z/5~(u, e; 1) the equations 

n=o n! (n--1)pn(>~)+(~--yl~pn(y,~) 
~ )/~+1l,,_1 

n! rn(y) (4.10) 
n - - O  

where y = u/t, and 

~ ).ntn l l f ~  ~ ).~t n ~ 
p , ( y , ~ ) d e =  n! rn(y) (4.11) 

,=o n! 2 1 ~=o 

Comparing coefficients in (4.10) and (4.11), we obtain 

( a - U ) ~ u P , ( U ; ~ ) + ( n - 1 ) p n ( u ; ~ ) = n r , _ l ( u )  (4.12) 

- p~(u;cOdc~=r,,(u ) (4.13) 
2 -1 

Differentiating (4.12) n -  1 times gives 

0 n n d ~ 1 

Ou,i p~(u; ~) a - - u  du ~ i r~_ l(u) (4.14) 

Integrate (4.14) with respect to e and use (4.13) to obtain 

d n d n - l  
du n rn(u) = - n  arctanh u dun_ ~ r ,_ l(u) (4.15) 

{note that arctanh u = �89 log[(u + 1)/(1 - u)]  }. Since 
- 1 ~< u ~< 1, (4.15) implies that  

d n n T 
r.(u) = ( -  1)" ~ (arctanh u) ~ 

du" z 

ro(u)=l /2 ,  

(4.16) 

By Taylor 's  formula, 
n 1 1 d i 

rn(u)---- E ~(Uq-1) i~- . i  r n ( - 1 )  
i = o ~bl 

n (u - x) n - ' (arctanh x) n dx, +(-1)n~ _,  u e [ - 1 , 0 ]  (4.17) 
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The polynomial term on the right-hand side of (4.17) vanishes. We have 

d i 
du--5~r,(-1)=O for all n>~landi=O, 1,2,.. . ,n-1 (4.18) 

The proof of (4.18) turns out to require laborious calculations (which 
present the main difficulty of this derivation) and is given in the Appendix. 
Taking (4.18) for granted, (4.17) gives for r,(u) the identity 

fu n ( u - x )  n l ( a rc tanhx)  ndx, u e [ - 1 , 0 ] ,  n~>l r"(u) = ( -  1)n 2 -1 

(4.19) 

Now 
obtain 

~=o ~ [ e x p ( - 2 0 ]  t ' r .  

= [ e x p ( - 2 t ) ]  (20 1_ exp[2(tx+u)arctanhx] 

arctanh x dx~, 0 < u < t • 
J 

we use (4.8), (4.6), and the symmetry property rn(u)=rn(-u) to 

(4.20) 

12 

Fig. 3. Plot of@(u; 1) for 2=3. 

~i )u 
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By (4.2) we finally arrive at an expression for gl(U; t): 

0(u; t) = ~ 2 exp{2(tx + u) arctanh x} 
1 

x ( a r c t a n h x ) 2 d x + ~ a r c t a n h t ) ,  0 < u < t  (4.21) 

~(u; t) is of order O(u 1), as u+0, and of order O(]log(t-u)]),  as uTt. The 
typical shape of ~(u; t) is shown in Fig. 3, where I have taken t = 1 and 
2 = 3. The increase to infinity as u T 1 is too slow to be represented in the 
plot. 

5. ' T R A N S F O R M S  

In the special case of exponential step lengths and uniformly 
distributed changes of directions one can obtain the combined 
Fourier-Laplace transform ofp(x,  e; t) (with respect tO x and t for fixed e) 
dire, ctly from (2.9). Thus, let again ~((e, e ' ) ) =  1/O(Sn-1)=F(n/2)/2~ "/2 
Then (2.9) takes the form 

0 
~ p ( x ,  e; t ) +  (e, gradx p(x, e; t ) )  + 2p(x, e; t) 

F(n/2) 2 , 
- 2 - Y  qtx; t) (5.1) 

where 

q(x; t) = fs,_ 1 p(x, e; t) dO(e) (5.2) 

Obviously q(x; t) is the probability density of X(t), the displacement at 
time t. Let 

fo;o fi(O,e;s)= , e ~<~ ~tp(x,e;t) dtdx, O~IR', s>>.O (5.3) 

o(o; s)= fo. f ~ ei<~ t) dt dx 

fo = E(e i<~ e - "  dt (5.4) 

Suppose that X(O)= 0 and the first direction has the probability density 
h(e) with respect to O(de). 
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Transforming both sides of (5.1) yields the identities 

/~(0, e ; s ) =  [s - - i (e ,  0 ) + 4 ]  -1 [F(n/2) 2 ] L 2~"/2 3(0, s) + h(e) (5.5) 

~s,_t [h(e) / (s-  i( e, O) + 4)] dO(e) 
3(0; s ) -  1 - IF(n~2) 2/2rc "/2 ] ~s,_X [1/(s - i ( e ,  O) + 2)] dO(e) 

0s0~ n, s > 0  (5.6) 

In particular, formula (1.5) follows. 
As an application, let us consider the three-dimensional case with con- 

stant h(e ) -1 /4~  so that all directions (including the initial one) are 
uniformly distributed on the sphere S 2. Obviously, 0(0; s) depends on 0 
only through 11011 = p. Introducing polar coordinates, we obtain 

fs2( S - - i ( e , O ) + 4 )  l dO(e) 

= fs2 ( s + 2 - i p e l ) - I  dO(e) 

= 2zcff s in td t  _ -1 P (5.7) 
s + 2 - i p c o s t  P a r c t a n s + 2  

Thus, 

3(0; s) = E(e z<~ e - ' t  dt 

(1/llOll) arctan[llOlt/(s + 2)] 

1 - (2/11011) arctan [II OII/(s + 4)] 
(5.8) 

By Laplace inversion of 3(0; s), one can find the characteristic function of 
X(t); however, there seems to be no closed-form expression for this 
function. 

For general n we have to compute 

fs n ( s - i ( e ,  0 ) + 2 )  -1 dO(e) 
I 

= 2~ IF] sin n - k v dv 
~= 3 s + 2 -  i tlOIq cos v 

dv (5.9) 
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If n = 4, this is equal to 4re 2 II 0 II - 2 { [ (s + 2)2 + I I 0 It 2 ] 1/2 _ s - 2 }, so that, by 
(4.6), 

2{I-(s +,~)2 + 11011211/2-s-,~} 
4(O;s)= 110112_ 22{ E(s + 2)2 + 11011211/2_s_2 } (5.10) 

If n ~> 5, we can use the formulas (see ref. 16, p. 378) 

fo F((m + 1)/2) F(1/2) 1 
sin m v dv = F((m + 2)/2) ' m /> 

fo sinm v dv 
- ip cos v 

= \ 4 p 2 j  A 

where m/> 3, a > 0 ,  B(x, y) is the beta function, k is the largest 
~< (m - 1 )/2, and 

A = - 7  1 +  - 1  if m i s e v e n  p- 

2 p if m is odd m = - arctan - ,  
p a 

(5.11) 

(5.12) 

integer 

Let us denote by f(x,  e; t) the joint  density of (X(t), D(t)) in the case 
h - 1 / O ( S  n 1), and let j~(0, e;s) be its transform (5.3). Then, calculating 
f(O, e; s) from (5.5) and (5.6) and comparing the result with (5.13) shows 
that  

27C n/2 
4(0; s leo) - V(n/2) f(O, eo ; s) (5.14) 

Inserting (5.11) and (5.12) into (5.9) and the result into (5.6) gives the 
desired closed-form expression for 0(0; s). 

In applications the initial direction of the random walk is often 
assumed to be known. Let q(x; tie0) be the density of J((t), given that 
D(0) = eo. Its transform 0(0; s] eo) is given by (5.6) if we replace h(e) dO(e) 
by 6(e-eo). One obtains 

( 2rrn/z dO(e) 
4(O;sleo)= Es- i (e ,  O) + 2 ]  -1 ~ (5.13) 

\F(n/2) Jso-~s - i (e ,O)+2 
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Thus we arrive at the following identity between densities: 

27zn/2 
q(x; t leo) - V(n/2) f (x ,  eo; t) (5.15) 

Equation (5.15) allows us to reduce the computation of the density of X(t) 
for arbitrary fixed initial direction to that of the density of (X(t), D(t)) for 
uniformly distributed initial direction. For example, in the two-dimensional 
case we obtain from (3.12) 

q(x; t[ e0) = 2 exp{2(t 2 - Ilxll 2 ) 1 / 2  __ 2t}/ZTr(t-- (x ,  eo )) 

o ~< [Ixtl < t, x • teo (5.16) 

In the three-dimensional case we can use (4.32), (3.7), and (5.15) to 
represent q(x; tie0) as a complicated double integral: 

q(x;tleo) 

_ 22 f t  
4re IIx teoll2/(2(t- (x, eo>)) 

{expl- - 2 ( t -  u)] } IIx- ( t -  u) eoll--1 

X [fe-lllX-(t-u)e~ exp {2(uv + IIx - ( t -  u) eo]l) arctanh v} 

1 14x- ( t -  u) eoll] du • (arctanh v) 2 dv + -  arctanh (5.17) 
U U 

if x r teo [at x = teo the distribution of X(t) given D(0) = eo has of course 
an atom of size e x']. Its transform is, however, of a simple form: 

[ ( Holl )l 1 
4(O, sleo)= (s - i<eo ,  0 ) + 2 )  1-,-7~.arctan (5.18) 

s + , lJ 

A P P E N D I X .  

L e t  

PROOF OF FORMULA (4.18) 

f 
oO 

Pn(s, ~; t) ,su- = e pn(u ,  c~; t) du 
c o  

in(s ;  t)  = e'~U?n(u; t) du 
- - o 0  
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be the Fourier transforms of/~, and ?, with respect to u. By (4.3), we have 

2 
Ot ~(s, ~; t) + (ias + 2)/~(s, c~; t) = ~ ?(s; t) (A.I) 

Therefore e;~t~(s, ~; t) satisfies, as a function of t, the linear differential 
equation 

3 2 
(e~t~(s, ~; t))= -iase~*~(s, ~; t)+e;~' 7 P(s; t) 

8t otT~ 
(A.2) 

and is thus given by 

] e;~tfi(s,~;t)=e io~st _~?(s;y)  e;~y+i~Sydy+C (A.3) 

Since/~(s, a; 0) = 1/4n, the constant C is equal to 1/4~z. Integrating (A.3) 
with respect to c~ yields 

f 
l 

2~ e;"~(s, ~; t) da 
--1 

f~ sin s(y - t) 
---= 2 t~(S; Y) e'~Y s ( y - -  t) 

sin st 
- -  ( A . 4 )  dy + st 

The left-hand side of (A.4) is the Fourier transform of e;~tr(u; t), and the 
integrand at the right-hand side is the product of the Fourier transforms of 
e%(u; y) and the uniform density [ 2 ( t - y ) ]  -1 l~_(,_y),,_yl(U ) (all with 
respect to u). This can be utilized as follows. Let g(u, v)= 
exp[2(u + v)/2] ?((u - v)/2; (u + v)/2). Taking inverse Fourier transforms in 
(A.4), it is readily calculated that g satisfies the integral equation 

g(u, V) = (U+ V)-I+ dz dx, 
u - - x + v - - z  

u , v > 0  (A.5) 

Indeed; by (A.4), 

f~ l [ f  t-y g ( y + s - z ' ,  y - ( s - z ' ) ) d z ' ] d y + ( 2 t )  -1 g ( t + s , t - s ) - - 2  2 ( t - y )  _~_y) 

(A.6) 

and the transformations u = t + s ,  v = t - s ,  x = y + s - z ' ,  and 
z=  y -  ( s -  z') prove (A.5) [note that g(x, z)=O if x + z < [ x - z [ ] .  
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It follows from the definition of g, (4.6), and (4.8) that 

u, v > O  

x e [ - - 1 ,  1] 

(A.11) 

~ 2 " 2  "-1 ( u - v )  g(u, v ) = ~ o n  ! (u+v) "-~ r, , (A.7) 

and, by (A.5), 

g(u.v)=(u+v)-~ + . . . . .  
, = o n ! 2  ~ u - x + v - z  

X - - Z  

Equating the coefficients of 2 ~ in (A.7) and (A.8) shows that 

r. ~ =n(u+v)  -2 " v 1--((-;-~zz)~-dT-~E(x + z) / (u+v)]"-2  r ._ ,  ~x-z  dz,tx 

n iiD y~ t =~ l _  yr,'_~(w) dydw (A.9) 

where the second equation follows from the change of variables 
y = (x + z)/(u + v), w = (x - z)/(x + z). The region of integration D is given 
by 

x e (0, u), z e (0, v) 
+ x +  

u - v 2u 

u -  v 2v 

For arbitrary x e  [ -  1, l l  choose u, v such that u + v =  1 and x - u - v .  
Then, by (A.9) and (A.10), we obtain the recursion 

r . ( x ) = g  - , r " - ~ ( w )  - ( 7 }  dy dw 

+~  r . _dw)  ~7)Sdr  dw, 
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In particular, r , ( - 1 ) =  r , ( 1 ) = 0  for all n~> l. Calculating the derivative of 
r,(x) starting from (A.11), it is easily checked that for n/> 2 

n x (df2,-x)/(1-w)y.-X)yx 1--y r;(x)-- f_, ro_,(w) dy dw 

~ i -_Tdv)  d w 

n x ( Z  r('--X)/(l--w)yn--2 ) 
= - g  f_l r._1(W) \dw Jo l _  ydy_ dw 

rl f f  (~___.~ (l+x)/(l+w) y n - 2 1 )  r._,(w) [ dy dw 
~o - -Y  

n f  x ( f i l -x ) / (1-w)Y n-2 ) 
=-2 -1 fn-l(W) ~ T d y  dw 

r; ,(w) ]~_ydy) dw (A.12) 

In particular, r ' , ( -  1) = r ' ,(1)= 0 for all n ~> 2. Iterating (A.12), one can now 
show that (dk/du k) r , ( - 1 ) = 0  for k = 0 ,  1, 2,..., n - 1 .  The proof of (4.18) 
and thus the derivation of Section 4 are now complete. 
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